P
Pltm MCP
by @Alby2007
MCP server by Alby2007
Created 1/31/2026
Updated 2 days ago
README
Repository documentation and setup instructions
PLTM MCP Server
Procedural Long-Term Memory - An MCP server for Claude Desktop that provides 78 tools for AGI experiments based on universal principles from physics.
What This Does
Gives Claude Desktop access to:
- Memory operations - Store/retrieve facts as semantic triples
- Diversity retrieval - MMR, entropy injection, attention mechanisms
- Meta-cognition - Self-improvement, criticality monitoring
- Knowledge ingestion - ArXiv papers with real provenance
- True metrics - Action accounting, efficiency tracking
Quick Start
Prerequisites
- Claude Desktop
- Python 3.11+
Installation
# Clone
git clone https://github.com/Alby2007/pltm-mcp.git
cd pltm-mcp
# Install
pip install -r requirements.txt
# Configure Claude Desktop
# Edit: %APPDATA%\Claude\claude_desktop_config.json (Windows)
# or: ~/Library/Application Support/Claude/claude_desktop_config.json (Mac)
Add this to your config:
{
"mcpServers": {
"pltm-memory": {
"command": "python",
"args": ["C:/absolute/path/to/pltm-mcp/server.py"]
}
}
}
Restart Claude Desktop. Done!
Verify
In Claude Desktop:
Use entropy_stats to check system state
If you see metrics, it's working!
Example Usage
# Start experiment cycle
start_action_cycle(cycle_id="C1")
# Inject entropy to break conceptual neighborhoods
inject_entropy_antipodal(
user_id="alice",
current_context="machine learning"
)
# Retrieve with diversity
mmr_retrieve(
user_id="alice",
query="neural networks",
lambda_param=0.6
)
# Track true computational cost
record_action(
operation="mmr_diversity",
tokens_used=450,
latency_ms=180,
success=True
)
# Check criticality state
criticality_state()
# End cycle
end_action_cycle() # Returns AAE efficiency
The Experiment
Hypothesis: Universal principles from physics (criticality, self-organization, emergence) can bootstrap AGI.
Current Results:
- Unlocked entropy bottleneck (+56% in Cycle 21)
- Measuring true computational efficiency (AAE = 0.0023)
- Testing if system can self-organize toward criticality
Goal: Push system to critical point where phase transitions occur and higher-order intelligence emerges.
Tools (78 total)
Memory
store_memory_atom,retrieve_memories,update_memory,delete_memory
Diversity Retrieval
mmr_retrieve- Maximal Marginal Relevanceattention_retrieve,attention_multihead
Entropy Management
inject_entropy_antipodal- Activate distant conceptsinject_entropy_random- Sample diverse domainsinject_entropy_temporal- Mix old + recententropy_stats- Diagnose diversity
Meta-Cognition
self_improve_cycle- Generate/apply hypothesescriticality_state- Check edge of chaoscriticality_recommend- Get adjustments
Action Accounting
record_action,get_aae,start_action_cycle,end_action_cycle
Knowledge Ingestion
ingest_arxiv,search_arxiv,arxiv_history
[Full tool list in server.py]
Architecture
Memory Atoms (Triples)
↓
[subject] [predicate] [object]
↓
SQLite Graph Store
↓
Retrieval Systems (Standard/MMR/Attention)
↓
Meta-Cognitive Layer (Self-improvement/Criticality)
↓
MCP Tools (78 total)
Troubleshooting
Server not connecting?
- Check logs:
%APPDATA%\Claude\logs\mcp-server-pltm-memory.log - Test manually:
python server.py
Tools timing out?
- Restart Claude Desktop after code changes
Import errors?
pip install --upgrade -r requirements.txt
Contributing
This is active research. Contributions welcome:
- New entropy strategies
- Better criticality metrics
- Additional universal principles
- Experiment protocols
License
MIT
Citation
@software{pltm2026,
author = {Alby},
title = {PLTM: Procedural Long-Term Memory MCP Server},
year = {2026},
url = {https://github.com/Alby2007/pltm-mcp}
}
Links
- Issues: github.com/Alby2007/pltm-mcp/issues
- Main Project: github.com/Alby2007/LLTM
Quick Setup
Installation guide for this server
Install Package (if required)
uvx pltm-mcp
Cursor configuration (mcp.json)
{
"mcpServers": {
"alby2007-pltm-mcp": {
"command": "uvx",
"args": [
"pltm-mcp"
]
}
}
}