MCP Servers

A collection of Model Context Protocol servers, templates, tools and more.

O
Ollama MCP Server

Use fast-agent to use MCP tools with local LLM, API or Claude Desktop. WIP

Created 5/6/2025
Updated 19 days ago
Repository documentation and setup instructions

Ollama MCP Server

A comprehensive Model Context Protocol (MCP) server for Ollama integration with advanced features including script management, multi-agent workflows, and process leak prevention.

๐ŸŒŸ Features

  • ๐Ÿ”„ Async Job Management: Execute long-running tasks in the background
  • ๐Ÿ“ Script Templates: Create reusable prompt templates with variable substitution
  • ๐Ÿค– Fast-Agent Integration: Multi-agent workflows (chain, parallel, router, evaluator)
  • ๐Ÿ›ก๏ธ Process Leak Prevention: Proper cleanup and resource management
  • ๐Ÿ“Š Comprehensive Monitoring: Job tracking, status monitoring, and output management
  • ๐ŸŽฏ Built-in Prompts: Interactive guidance templates for common tasks
  • โšก Multiple Model Support: Work with any locally installed Ollama model

๐Ÿš€ Quick Start

Prerequisites

Installation

  1. Setup Environment: Be advised- This readme was revised by a less than concientious AI.
cd /path/to/ollama-mcp-server
uv venv --python 3.12 --seed
source .venv/bin/activate
uv add mcp[cli] python-dotenv
  1. Configure Claude Desktop: Copy configuration from example_of_bad_ai_gen_mcp_config_do_not_use.json (Don't lol. Use the example_claude_desktop_config.json)to your Claude Desktop config file:
  • Linux: ~/.config/Claude/claude_desktop_config.json
  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  1. Update paths in the config to match your system

  2. Restart Claude Desktop

๐Ÿ› ๏ธ Available Tools

Core Operations

  • list_ollama_models - Show all available Ollama models
  • run_ollama_prompt - Execute prompts with any model (sync/async)
  • get_job_status - Check job completion status
  • list_jobs - View all running and completed jobs
  • cancel_job - Stop running jobs

Script Management

  • save_script - Create reusable prompt templates
  • list_scripts - View saved templates
  • get_script - Read template content
  • run_script - Execute templates with variables

Fast-Agent Workflows

  • create_fastagent_script - Single-agent scripts
  • create_fastagent_workflow - Multi-agent workflows
  • run_fastagent_script - Execute agent workflows
  • list_fastagent_scripts - View available workflows

System Integration

  • run_bash_command - Execute system commands safely
  • run_workflow - Multi-step workflow execution

๐Ÿ“– Built-in Prompts

Interactive prompts to guide common tasks:

  • ollama_guide - Interactive user guide
  • ollama_run_prompt - Simple prompt execution
  • model_comparison - Compare multiple models
  • fast_agent_workflow - Multi-agent workflows
  • script_executor - Template execution
  • batch_processing - Multiple prompt processing
  • iterative_refinement - Content improvement workflows

๐Ÿ“ Directory Structure

ollama-mcp-server/
โ”œโ”€โ”€ src/ollama_mcp_server/
โ”‚   โ””โ”€โ”€ server.py                 # Main server code
โ”œโ”€โ”€ outputs/                      # Generated output files
โ”œโ”€โ”€ scripts/                      # Saved script templates
โ”œโ”€โ”€ workflows/                    # Workflow definitions
โ”œโ”€โ”€ fast-agent-scripts/          # Fast-agent Python scripts
โ”œโ”€โ”€ prompts/                      # Usage guides
โ”‚   โ”œโ”€โ”€ tool_usage_guide.md
โ”‚   โ”œโ”€โ”€ prompt_templates_guide.md
โ”‚   โ””โ”€โ”€ setup_guide.md
โ”œโ”€โ”€ example_mcp_config.json      # Claude Desktop config
โ””โ”€โ”€ README.md

๐Ÿ”ง Development

Run Development Server

cd ollama-mcp-server
uv run python -m ollama_mcp_server.server

Debug with MCP Inspector

mcp dev src/ollama_mcp_server/server.py

๐Ÿ›ก๏ธ Process Management

The server includes comprehensive process leak prevention:

  • Signal Handling: Proper SIGTERM/SIGINT handling
  • Background Task Tracking: All async tasks monitored
  • Resource Cleanup: Automatic process termination
  • Memory Management: Prevents accumulation of zombie processes

Monitor health with:

ps aux | grep mcp | wc -l  # Should show <10 processes

๐Ÿ“Š Usage Examples

Simple Prompt Execution

1. Use "ollama_run_prompt" prompt in Claude
2. Specify model and prompt text
3. Get immediate results

Multi-Agent Workflow

1. Use "fast_agent_workflow" prompt
2. Choose workflow type (chain/parallel/router/evaluator)
3. Define agents and initial prompt
4. Monitor execution

Script Templates

1. Create template with save_script
2. Use variables: {variable_name}
3. Execute with run_script
4. Pass JSON variables object

๐Ÿšจ Troubleshooting

Model not found: Use list_ollama_models for exact names Connection issues: Start Ollama with ollama serve High process count: Server now prevents leaks automatically Job stuck: Use cancel_job to stop problematic tasks

๐Ÿค Contributing

  1. Follow the MCP Python SDK development guidelines
  2. Use proper type hints and docstrings
  3. Test all new features thoroughly
  4. Ensure process cleanup in all code paths

๐Ÿ“„ License

This project follows the same license terms as the MCP Python SDK.

๐Ÿ™ Acknowledgments

Built on the Model Context Protocol and Ollama with process management patterns from MCP best practices.


Ready to get started? Check the prompts/setup_guide.md for detailed installation instructions!