MCP Servers

A collection of Model Context Protocol servers, templates, tools and more.

A
Apache Flink MCP Server

A MCP Server for Apache Flink

Created 7/15/2025
Updated 6 days ago
Repository documentation and setup instructions

Apache Flink MCP Server

A Model Context Protocol (MCP) server implementation for Apache Flink that enables AI assistants and large language models to interact with Flink clusters through natural language interfaces. This server provides comprehensive tools for monitoring, managing, and analyzing Apache Flink streaming applications.

alt text

Overview

The Apache Flink MCP Server bridges the gap between AI assistants (like Claude Desktop) and Apache Flink clusters by providing a standardized MCP interface. It allows users to perform complex Flink operations through conversational AI, making stream processing management more accessible and intuitive.

Features

🎯 Core Capabilities

  • Cluster Monitoring: Get real-time cluster information including jobs, slots, and TaskManagers
  • Job Management: List, monitor, and analyze Flink job details and metrics
  • Exception Tracking: Retrieve and analyze job exceptions for debugging
  • Resource Management: Monitor TaskManager resources and JAR file deployments
  • Metrics Collection: Access comprehensive job and cluster metrics

🔧 Available Tools

  • get_cluster_info: Fetch overview of Flink cluster status
  • list_jobs: List all current and recent Flink jobs with their status
  • get_job_details: Get detailed information about specific Flink jobs
  • list_taskmanagers: List all registered TaskManagers in the cluster
  • get_job_exceptions: Retrieve exceptions that occurred in jobs
  • list_jar_files: List all uploaded JAR files in the cluster
  • get_job_metrics: Fetch useful metrics for running Flink jobs

🚀 Benefits

  • Natural Language Interface: Interact with Flink using conversational AI
  • Real-time Monitoring: Get instant insights into cluster and job status
  • Debugging Support: Easily access exception logs and metrics
  • Resource Optimization: Monitor resource usage across TaskManagers
  • Developer Productivity: Reduce time spent navigating Flink Web UI

Installation

Prerequisites

  • Apache Flink cluster (running and accessible)
  • Python 3.8 or higher
  • MCP-compatible client (Claude Desktop, etc.)

Client Configuration

Claude Desktop

Add to your Claude Desktop configuration (claude_desktop_config.json):

{
  "mcpServers": {
    "apache-flink": {
      "command": "python",
      "args": ["/path/to/apache-flink-mcp-server/server.py"],
      "env": {
        "FLINK_REST_URL": "http://localhost:8081"
      }
    }
  }
}

Usage Examples

Basic Cluster Monitoring

Human: What's the status of my Flink cluster?
AI: I'll check your Flink cluster status for you.
[Uses get_cluster_info tool to fetch cluster overview]

Job Analysis

Human: Show me all running jobs and their performance metrics
AI: Let me get the current jobs and their metrics.
[Uses list_jobs and get_job_metrics tools]

Troubleshooting

Human: My job with ID abc123 is failing. Can you help me debug it?
AI: I'll check the job details and any exceptions for job abc123.
[Uses get_job_details and get_job_exceptions tools]

Resource Management

Human: How are my TaskManager resources being utilized?
AI: Let me check your TaskManager status and resource allocation.
[Uses list_taskmanagers tool]

API Reference

Available MCP Tools

get_cluster_info

Description: Fetch an overview of the Flink cluster including jobs, slots, and TaskManagers. Parameters: None Returns: Cluster overview with resource information

list_jobs

Description: List all current and recent Flink jobs with their status. Parameters: None Returns: List of jobs with status, start time, and duration

get_job_details

Description: Get detailed information about a specific Flink job. Parameters:

  • job_id (string, required): The unique identifier of the Flink job

list_taskmanagers

Description: List all registered TaskManagers in the cluster. Parameters: None Returns: List of TaskManagers with resource information

get_job_exceptions

Description: Fetch exceptions that occurred in the specified job. Parameters:

  • job_id (string, required): The unique identifier of the Flink job

list_jar_files

Description: List all uploaded JAR files in the Flink cluster. Parameters: None Returns: List of available JAR files

get_job_metrics

Description: Fetch selected useful metrics for a running Flink job. Parameters:

  • job_id (string, required): The unique identifier of the Flink job

Troubleshooting

Common Issues

Connection Failed

  • Verify Flink cluster is running and accessible
  • Check FLINK_REST_URL configuration
  • Ensure network connectivity to Flink JobManager

Permission Errors

  • Verify Flink REST API is enabled
  • Check if authentication is required for your Flink setup

Debug Mode

Enable detailed logging:

export LOG_LEVEL=DEBUG
python server.py

Contributing

We welcome contributions! Please follow these steps:

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature-name
  3. Make your changes and add tests
  4. Commit your changes: git commit -m "Add feature"
  5. Push to your fork: git push origin feature-name
  6. Create a Pull Request

Development Guidelines

  • Follow PEP 8 style guidelines
  • Update documentation as needed
  • Ensure backward compatibility

License

This project is licensed under the MIT License.

Related Projects

Support

Acknowledgments

  • Apache Flink community for the excellent stream processing framework
  • Model Context Protocol team for the standardized interface
  • Contributors and users of this project

Note: This MCP server provides read-only access to Flink cluster information by default. For write operations, additional configuration and security considerations may be required.

Quick Setup
Installation guide for this server

Install Package (if required)

uvx apache-flink-mcp-server

Cursor configuration (mcp.json)

{ "mcpServers": { "ashfaqbs-apache-flink-mcp-server": { "command": "uvx", "args": [ "apache-flink-mcp-server" ] } } }