UniProt MCP Server - Access comprehensive protein data via Model Context Protocol. Search, retrieve, and analyze UniProt entries with full-text search, ID mapping, and rich metadata. Supports stdio & HTTP transports for Claude Desktop and custom integrations.
UniProt MCP Server
A Model Context Protocol (MCP) server that provides seamless access to UniProtKB protein data. Query protein entries, sequences, Gene Ontology annotations, and perform ID mappings through a typed, resilient interface designed for LLM agents.
✨ Features
- 🔌 Dual Transport: Stdio for local development and Streamable HTTP for remote deployments
- 📊 Rich Data Access: Fetch complete protein entries with sequences, features, GO annotations, cross-references, and taxonomy
- 🔍 Advanced Search: Full-text search with filtering by review status, organism, keywords, and more
- 🔄 ID Mapping: Convert between 200+ database identifier types with progress tracking
- 🛡️ Production Ready: Automatic retries with exponential backoff, CORS support, Prometheus metrics
- 📝 Typed Responses: Structured Pydantic models ensure data consistency
- 🎯 MCP Primitives: Resources, tools, and prompts designed for agent workflows
🚀 Quick Start
Installation
pip install uniprot-mcp
Run the Server
Local development (stdio):
uniprot-mcp
Remote deployment (HTTP):
uniprot-mcp-http --host 0.0.0.0 --port 8000
The HTTP server provides:
- MCP endpoint: http://localhost:8000/mcp
- Health check: http://localhost:8000/healthz
- Metrics: http://localhost:8000/metrics(Prometheus format)
Test with MCP Inspector
npx @modelcontextprotocol/inspector uniprot-mcp
📚 MCP Primitives
Resources
Access static or dynamic data through URI patterns:
| URI | Description |
|-----|-------------|
| uniprot://uniprotkb/{accession} | Raw UniProtKB entry JSON for any accession |
| uniprot://help/search | Documentation for search query syntax |
Tools
Execute actions and retrieve typed data:
| Tool | Parameters | Returns | Description |
|------|-----------|---------|-------------|
| fetch_entry | accession, fields? | Entry | Fetch complete protein entry with all annotations |
| get_sequence | accession | Sequence | Get protein sequence with length and metadata |
| search_uniprot | query, size, reviewed_only, fields?, sort?, include_isoform | SearchHit[] | Full-text search with advanced filtering |
| map_ids | from_db, to_db, ids | MappingResult | Convert identifiers between 200+ databases |
| fetch_entry_flatfile | accession, version, format | string | Retrieve historical entry versions (txt/fasta) |
Progress tracking: map_ids reports progress (0.0 → 1.0) for long-running jobs.
Prompts
Pre-built templates for common workflows:
- Summarize Protein: Generate a structured summary from a UniProt accession, including organism, function, GO terms, and notable features.
🔧 Configuration
Environment Variables
| Variable | Default | Description |
|----------|---------|-------------|
| UNIPROT_ENABLE_FIELDS | unset | Request minimal field subsets to reduce payload size |
| UNIPROT_LOG_LEVEL | info | Logging level: debug, info, warning, error |
| UNIPROT_LOG_FORMAT | plain | Log format: plain or json |
| UNIPROT_MAX_CONCURRENCY | 8 | Max concurrent UniProt API requests |
| MCP_HTTP_HOST | 0.0.0.0 | HTTP server bind address |
| MCP_HTTP_PORT | 8000 | HTTP server port |
| MCP_HTTP_LOG_LEVEL | info | Uvicorn log level |
| MCP_HTTP_RELOAD | 0 | Enable auto-reload: 1 or true |
| MCP_CORS_ALLOW_ORIGINS | * | CORS allowed origins (comma-separated) |
| MCP_CORS_ALLOW_METHODS | GET,POST,DELETE | CORS allowed methods |
| MCP_CORS_ALLOW_HEADERS | * | CORS allowed headers |
CLI Flags
# HTTP server flags
uniprot-mcp-http --host 127.0.0.1 --port 9000 --log-level debug --reload
📖 Usage Examples
Fetching a Protein Entry
# Using MCP client
result = await session.call_tool("fetch_entry", {
    "accession": "P12345"
})
# Returns structured Entry with:
# - primaryAccession, protein names, organism
# - sequence (length, mass, sequence string)
# - features (domains, modifications, variants)
# - GO annotations (biological process, molecular function, cellular component)
# - cross-references to other databases
Searching for Proteins
# Search reviewed human proteins
result = await session.call_tool("search_uniprot", {
    "query": "kinase AND organism_id:9606",
    "size": 50,
    "reviewed_only": True,
    "sort": "annotation_score"
})
# Returns list of SearchHit objects with accessions and scores
Mapping Identifiers
# Convert UniProt IDs to PDB structures
result = await session.call_tool("map_ids", {
    "from_db": "UniProtKB_AC-ID",
    "to_db": "PDB",
    "ids": ["P12345", "Q9Y6K9"]
})
# Returns MappingResult with successful and failed mappings
🛠️ Development
Prerequisites
- Python 3.11 or 3.12
- uv (recommended) or pip
Setup
# Clone the repository
git clone https://github.com/josefdc/Uniprot-MCP.git
cd Uniprot-MCP
# Install dependencies
uv sync --group dev
# Install development tools
uv tool install ruff
uv tool install mypy
Running Tests
# Run all tests with coverage
uv run pytest --maxfail=1 --cov=uniprot_mcp --cov-report=term-missing
# Run specific test file
uv run pytest tests/unit/test_parsers.py -v
# Run integration tests only
uv run pytest tests/integration/ -v
Code Quality
# Lint
uv tool run ruff check .
# Format
uv tool run ruff format .
# Type check
uv tool run mypy src
# Run all checks
uv tool run ruff check . && \
uv tool run ruff format --check . && \
uv tool run mypy src && \
uv run pytest
Local Development Server
# Stdio server
uv run uniprot-mcp
# HTTP server with auto-reload
uv run python -m uvicorn uniprot_mcp.http_app:app --reload --host 127.0.0.1 --port 8000
🏗️ Architecture
src/uniprot_mcp/
├── adapters/           # UniProt REST API client and response parsers
│   ├── uniprot_client.py  # HTTP client with retry logic
│   └── parsers.py         # Transform UniProt JSON → Pydantic models
├── models/
│   └── domain.py       # Typed data models (Entry, Sequence, etc.)
├── server.py           # MCP stdio server (FastMCP)
├── http_app.py         # MCP HTTP server (Starlette + CORS)
├── prompts.py          # MCP prompt templates
└── obs.py              # Observability (logging, metrics)
tests/
├── unit/               # Unit tests for parsers, models, tools
├── integration/        # End-to-end tests with VCR fixtures
└── fixtures/           # Test data (UniProt JSON responses)
📦 Publishing
This server is published to:
- PyPI: uniprot-mcp
- MCP Registry: io.github.josefdc/uniprot-mcp
Building and Publishing
# Build distribution packages
uv build
# Publish to PyPI (requires token)
uv publish --token pypi-YOUR_TOKEN
# Publish to MCP Registry (requires GitHub auth)
mcp-publisher login github
mcp-publisher publish
See docs/registry.md for detailed registry publishing instructions.
🤝 Contributing
Contributions are welcome! Please:
- Read our Contributing Guidelines
- Follow our Code of Conduct
- Check the Security Policy for vulnerability reporting
- Review the Changelog for recent changes
Quick start for contributors:
- Fork the repository
- Create a feature branch (git checkout -b feature/amazing-feature)
- Make your changes with tests
- Run quality checks: uv tool run ruff check . && uv tool run mypy src && uv run pytest
- Commit using Conventional Commits (feat:,fix:,docs:, etc.)
- Push and open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- UniProt Consortium: For providing comprehensive, high-quality protein data through their REST API
- Anthropic: For the Model Context Protocol specification and Python SDK
- Community: For feedback, bug reports, and contributions
🔗 Links
- Documentation: GitHub Repository
- UniProt API: REST API Documentation
- MCP Specification: Model Context Protocol
- Issues & Support: GitHub Issues
⚠️ Disclaimer
This is an independent project and is not officially affiliated with or endorsed by the UniProt Consortium. Please review UniProt's terms of use when using their data.
Built with ❤️ for the bioinformatics and AI communities