MCP server that splits large images into optimally-sized tiles for LLM vision (Claude, OpenAI, Gemini, Gemini 3)
image-tiler-mcp-server
Split large images into optimally-sized tiles so LLM vision models see every detail — no downscaling, no lost text.
Why tiling matters
LLM vision systems have a maximum input resolution. When you send an image larger than that limit, the model silently downscales it before processing. A 3600×22810 full-page screenshot gets shrunk to ~247×1568 by Claude — text becomes unreadable, UI details disappear, and the model can't analyze what it can't see.
Tiling solves this. This MCP server:
- Reads the image dimensions and the target model's vision config
- Calculates an optimal grid that keeps every tile within the model's sweet spot
- Extracts tiles as individual PNGs and saves them to disk
- Returns metadata (grid layout, file paths, estimated token cost)
- Serves tiles back as base64 in paginated batches for the LLM to analyze
Each tile is processed at full resolution — no downscaling — preserving text, UI elements, and fine detail across the entire image.
See sample of generated tiles here.
Supported Models
| Model | Default tile | Tokens/tile | Max tile | ID |
|-------|-------------|-------------|----------|-----|
| Claude (default) | 1092px | 1590 | 1568px | claude |
| OpenAI (GPT-4o/o-series) | 768px | 765 | 2048px | openai |
| Gemini | 768px | 258 | 768px | gemini |
| Gemini 3 | 1536px | 1120 | 3072px | gemini3 |
OpenAI note: The
openaiconfig targets the GPT-4o / o-series vision pipeline (512px tile patches). GPT-4.1 uses a fundamentally different pipeline (32x32 pixel patches) and is not currently supported — it would require a separate model config with a different calculation approach.
Gemini 3 note: Gemini 3 uses a fixed token budget per image (1120 tokens regardless of dimensions). Tiling increases total token cost but preserves fine detail. For cases where detail isn't critical, consider sending a single image instead.
Tools
tiler_tile_image
Splits a large image into tiles and saves them to disk.
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
| filePath | string | yes | — | Absolute or relative path to the image file |
| model | string | no | "claude" | Target vision model: "claude", "openai", "gemini", "gemini3" |
| tileSize | number | no | Model default | Tile size in pixels. Clamped to model min/max with a warning if out of bounds. |
| outputDir | string | no | tiles/{name} subfolder next to source | Directory to save tiles |
Returns JSON metadata with grid dimensions, tile count, model used, estimated token cost, and per-tile file paths.
tiler_get_tiles
Returns tile images as base64 in batches of 5 for the LLM to see directly.
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
| tilesDir | string | yes | — | Path to tiles directory (from tiler_tile_image) |
| start | number | no | 0 | Start tile index (0-based, inclusive) |
| end | number | no | start + 4 | End tile index (0-based, inclusive) |
Returns text labels + image content blocks. Includes pagination hint for the next batch.
Installation
Claude Code
claude mcp add image-tiler -- npx -y image-tiler-mcp-server
image-tileris a local alias — you can name it anything you like.image-tiler-mcp-serveris the npm package that gets downloaded and run.
See Claude Code MCP docs for more info.
Claude Desktop
Add to your Claude Desktop config file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json
{
"mcpServers": {
"image-tiler": {
"command": "npx",
"args": ["-y", "image-tiler-mcp-server"]
}
}
}
Restart Claude Desktop after editing.
VS Code (Cline / Continue)
Add to your VS Code MCP settings:
{
"image-tiler": {
"command": "npx",
"args": ["-y", "image-tiler-mcp-server"]
}
}
Cursor
Add to ~/.cursor/mcp.json:
{
"mcpServers": {
"image-tiler": {
"command": "npx",
"args": ["-y", "image-tiler-mcp-server"]
}
}
}
Global Install (faster startup)
npm install -g image-tiler-mcp-server
Then use the simpler config in any client:
{
"command": "image-tiler-mcp-server"
}
From Source
git clone https://github.com/keiver/image-tiler-mcp-server.git
cd image-tiler-mcp-server
npm install
npm run build
Then point your MCP config to the built file:
{
"command": "node",
"args": ["/absolute/path/to/image-tiler-mcp-server/dist/index.js"]
}
Usage
In Claude Code
> Tile the screenshot at ./screenshots/full-page.png and analyze the layout
Claude will:
1. Call tiler_tile_image(filePath="./screenshots/full-page.png")
2. See: "Tiled 3600x22810 image → 4x21 grid = 84 tiles"
3. Call tiler_get_tiles(tilesDir="./screenshots/tiles/full-page", start=0, end=4)
4. Analyze tiles 0-4, then continue with start=5...
With Other Models
> Tile this image for GPT-4o analysis
Claude will:
1. Call tiler_tile_image(filePath="./image.png", model="openai")
2. Tiles sized at 768px for OpenAI's vision pipeline
Typical Workflow
- Capture full-page screenshot with your browser extension
- Ask Claude: "Tile
/path/to/screencapture-localhost-3000.pngand review all sections" - Claude pages through tiles automatically, analyzing each batch
Tile Output Structure
Example: assets/landscape.png (7680x4032) tiled with the default Claude config (1092px tiles) produces an 8x4 grid of 32 tiles (~50,880 tokens).
Grid layout — tiles are numbered tile_ROW_COL.png, extracted left-to-right, top-to-bottom:
7680px
┌──────────┬──────────┬──────────┬──────────┬──────────┬──────────┬──────────┬────────┐
│ 000_000 │ 000_001 │ 000_002 │ 000_003 │ 000_004 │ 000_005 │ 000_006 │ 000_007│
│ 1092x1092│ 1092x1092│ 1092x1092│ 1092x1092│ 1092x1092│ 1092x1092│ 1092x1092│ 36x1092│ 4032px
├──────────┼──────────┼──────────┼──────────┼──────────┼──────────┼──────────┼────────┤
│ 001_000 │ 001_001 │ 001_002 │ 001_003 │ 001_004 │ 001_005 │ 001_006 │ 001_007│
│ 1092x1092│ 1092x1092│ 1092x1092│ 1092x1092│ 1092x1092│ 1092x1092│ 1092x1092│ 36x1092│
├──────────┼──────────┼──────────┼──────────┼──────────┼──────────┼──────────┼────────┤
│ 002_000 │ 002_001 │ 002_002 │ 002_003 │ 002_004 │ 002_005 │ 002_006 │ 002_007│
│ 1092x1092│ 1092x1092│ 1092x1092│ 1092x1092│ 1092x1092│ 1092x1092│ 1092x1092│ 36x1092│
├──────────┼──────────┼──────────┼──────────┼──────────┼──────────┼──────────┼────────┤
│ 003_000 │ 003_001 │ 003_002 │ 003_003 │ 003_004 │ 003_005 │ 003_006 │ 003_007│
│ 1092x756 │ 1092x756 │ 1092x756 │ 1092x756 │ 1092x756 │ 1092x756 │ 1092x756 │ 36x756 │
└──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴────────┘
Edge tiles are smaller: the rightmost column is 36px wide (7680 - 7×1092 = 36), and the bottom row is 756px tall (4032 - 3×1092 = 756).
Output directory:
assets/tiles/landscape/
├── tile_000_000.png # Row 0, Col 0 — 1092x1092
├── tile_000_001.png # Row 0, Col 1 — 1092x1092
├── tile_000_002.png # ...
├── ...
├── tile_000_007.png # Row 0, Col 7 — 36x1092 (right edge)
├── tile_001_000.png # Row 1, Col 0
├── ...
├── tile_003_006.png # Row 3, Col 6 — 1092x756 (bottom edge)
└── tile_003_007.png # Row 3, Col 7 — 36x756 (corner)
JSON metadata returned by tiler_tile_image:
{
"model": "claude",
"sourceImage": {
"width": 7680,
"height": 4032,
"format": "png",
"fileSize": 12345678,
"channels": 4
},
"grid": {
"cols": 8,
"rows": 4,
"totalTiles": 32,
"tileSize": 1092,
"estimatedTokens": 50880
},
"outputDir": "/path/to/assets/tiles/landscape",
"tiles": [
{ "index": 0, "row": 0, "col": 0, "position": "0,0", "dimensions": "1092×1092", "filePath": "/path/to/assets/tiles/landscape/tile_000_000.png" },
{ "index": 1, "row": 0, "col": 1, "position": "1092,0", "dimensions": "1092×1092", "filePath": "/path/to/assets/tiles/landscape/tile_000_001.png" },
"... 30 more tiles"
],
"previewPath": "/path/to/assets/tiles/landscape/preview.html"
}
Portrait example
assets/portrait.png (3600x22810) tiled with Claude defaults produces a 4x21 grid of 84 tiles (~133,560 tokens).
Grid layout:
3600px
┌──────────┬──────────┬──────────┬─────────┐
│ 000_000 │ 000_001 │ 000_002 │ 000_003 │
│ 1092x1092│ 1092x1092│ 1092x1092│ 324x1092│
├──────────┼──────────┼──────────┼─────────┤
│ 001_000 │ 001_001 │ 001_002 │ 001_003 │
│ 1092x1092│ 1092x1092│ 1092x1092│ 324x1092│ 22810px
├──────────┼──────────┼──────────┼─────────┤
│ ... │ ... │ ... │ ... │ (21 rows)
├──────────┼──────────┼──────────┼─────────┤
│ 020_000 │ 020_001 │ 020_002 │ 020_003 │
│ 1092x970 │ 1092x970 │ 1092x970 │ 324x970 │
└──────────┴──────────┴──────────┴─────────┘
Edge tiles: rightmost column is 324px wide (3600 - 3×1092 = 324), bottom row is 970px tall (22810 - 20×1092 = 970).
Token Cost Reference
Costs vary by model. Formula: tokens = totalTiles x tokensPerTile
Claude (1092px tiles, 1590 tokens/tile)
| Image Dimensions | Tiles | Estimated Tokens | |---|---|---| | 1440x3000 | 6 | ~9,540 | | 3600x5000 | 20 | ~31,800 | | 3600x22810 | 84 | ~133,560 |
OpenAI — GPT-4o/o-series (768px tiles, 765 tokens/tile)
| Image Dimensions | Tiles | Estimated Tokens | |---|---|---| | 1440x3000 | 8 | ~6,120 | | 3600x5000 | 35 | ~26,775 | | 3600x22810 | 150 | ~114,750 |
Gemini (768px tiles, 258 tokens/tile)
| Image Dimensions | Tiles | Estimated Tokens | |---|---|---| | 1440x3000 | 8 | ~2,064 | | 3600x5000 | 35 | ~9,030 | | 3600x22810 | 150 | ~38,700 |
Gemini 3 (1536px tiles, 1120 tokens/tile)
| Image Dimensions | Tiles | Estimated Tokens | |---|---|---| | 1440x3000 | 2 | ~2,240 | | 3600x5000 | 12 | ~13,440 | | 3600x22810 | 45 | ~50,400 |
Note: Gemini 3 uses a fixed 1120 tokens per image regardless of dimensions. More tiles = more total tokens but better detail preservation.
Supported Formats
PNG, JPEG, WebP, TIFF, GIF
Technical Details
- Image processing: Sharp (libvips) — demand-driven pipeline, streams tiles without full decompression
- Memory usage: ~350-400MB peak for 30MB+ PNGs
- Transport: stdio (local, single-session)
- Tile naming:
tile_ROW_COL.png(zero-padded, e.g.,tile_000_003.png) - Grid order: Left-to-right, top-to-bottom
- Batch limit: 5 tiles per
tiler_get_tilescall to stay within MCP response limits
Troubleshooting
"Command not found" — Make sure Node.js 18+ is installed: node --version
"File not found" — Use absolute paths. Relative paths resolve from the MCP server's working directory.
"MCP tools not available" — Restart your MCP client after config changes. In Claude Code, run /mcp to check server status.
Security
This is a local MCP server that runs on your machine via stdio. It operates with the same filesystem permissions as the MCP client process that spawns it. File paths provided to the tools are resolved and accessed directly — there is no sandboxing or path restriction beyond your OS-level permissions.
This is by design: MCP tools run in the user's security context, same as any CLI tool. No network access, no remote connections, no data sent externally.
Requirements
- Node.js 18+
- Compatible MCP client (Claude Code, Claude Desktop, Cursor, VS Code with MCP extension)
License
MIT