MCP Servers

A collection of Model Context Protocol servers, templates, tools and more.

MCP server by livingstaccato

Created 2/3/2026
Updated about 12 hours ago
Repository documentation and setup instructions

mcp-bbs

FastMCP-based telnet client for BBS (Bulletin Board System) interactions with auto-learning capabilities. Enables AI agents to interact with legacy telnet-based systems through the Model Context Protocol (MCP).

⚠️ AI-Generated Code Disclaimer

This project was generated using AI assistance. While functional, it may contain bugs, security vulnerabilities, or unexpected behavior. Use at your own risk. The author assumes no responsibility or liability for any issues, damages, or losses resulting from the use of this software. Review the code thoroughly before using in any production environment.

Overview

mcp-bbs bridges modern AI agents with vintage BBS systems by providing:

  • Full terminal emulation with ANSI/CP437 support
  • Pattern-based screen reading and navigation
  • Automatic discovery and documentation of menus and prompts
  • Session logging for analysis and replay
  • MCP tool exposure for seamless AI integration

Architecture

graph TB
    subgraph "AI Agent"
        LLM[Claude/LLM]
        MCP[MCP Client]
    end

    subgraph "mcp-bbs Server"
        App[FastMCP App]
        Client[TelnetClient]
        Protocol[TelnetProtocol]
        Screen[Terminal Emulator<br/>pyte]
        Learn[Auto-Learning]
        Log[Session Logger]
    end

    subgraph "BBS System"
        Telnet[Telnet Server :23]
        BBS[BBS Software]
    end

    subgraph "Knowledge Base"
        Prompts[prompt-catalog.md]
        Menus[menu-map.md]
        Flows[navigation-flows.md]
    end

    LLM --> MCP
    MCP -->|MCP Tools| App
    App --> Client
    Client --> Protocol
    Protocol -->|Telnet Commands| Telnet
    Telnet --> BBS
    BBS -->|ANSI Output| Telnet
    Telnet -->|Raw Bytes| Protocol
    Protocol --> Screen
    Screen --> Client
    Client --> Learn
    Learn --> Prompts
    Learn --> Menus
    Learn --> Flows
    Client --> Log

Features

  • Telnet Client: Full RFC 854 telnet protocol with option negotiation (BINARY, SGA, NAWS, TTYPE)
  • Terminal Emulation: Complete ANSI/CP437 terminal with 80x25 (configurable) screen buffer
  • Screen Reading: Extract text, match patterns, wait for prompts with timeout control
  • Auto-Learning: Discover menus [A] Option, prompts Enter name:, and document navigation flows
  • Session Logging: JSONL format with timestamps, context, and raw bytes for replay/analysis
  • MCP Integration: 25+ tools for connection, navigation, learning, and session management
  • Keepalive: Configurable interval to prevent idle disconnections

Installation

Prerequisites

Install uv (recommended package installer):

curl -LsSf https://astral.sh/uv/install.sh | sh

Or see uv installation docs for other methods.

Installing mcp-bbs

mcp-bbs is an MCP server that must be configured in your MCP client (Claude Desktop, Cline, etc.).

Option 1: Install as a tool (recommended)

uv tool install mcp-bbs

Then add to your MCP client configuration:

{
  "mcpServers": {
    "mcp-bbs": {
      "command": "mcp-bbs"
    }
  }
}

Option 2: Install with pip

pip install mcp-bbs

Then configure your MCP client to run mcp-bbs as a server.

Development Installation

git clone https://github.com/livingstaccato/mcp-bbs.git
cd mcp-bbs
uv pip install -e ".[dev]"

Quick Start Example

Here's a complete example of an AI agent connecting to a BBS, navigating menus, and reading messages:

from fastmcp import Client
from fastmcp.mcp_config import StdioMCPServer

# Start mcp-bbs server
server = StdioMCPServer(command="mcp-bbs", args=[])

async with Client(server.to_transport()) as client:
    # Connect to BBS
    await client.call_tool("bbs_connect", {
        "host": "bbs.example.com",
        "port": 23,
        "cols": 80,
        "rows": 25,
        "term": "ANSI",
        "send_newline": True
    })

    # Wait for main menu
    screen = await client.call_tool("bbs_read_until_pattern", {
        "pattern": r"\[M\] Main Menu",
        "timeout_ms": 5000
    })

    # Navigate to messages
    await client.call_tool("bbs_send", {"keys": "M\r"})

    # Read until message list appears
    screen = await client.call_tool("bbs_read_until_pattern", {
        "pattern": r"Message #\d+",
        "timeout_ms": 3000
    })

    print(screen["screen"])  # Display the screen

    # Disconnect
    await client.call_tool("bbs_disconnect", {})

Usage

As MCP Server

Run as an MCP server to expose BBS tools:

# Start the server (stdio transport)
mcp-bbs

# Or specify config
mcp-bbs --host localhost --port 2002

Programmatic Usage

Direct Python API usage without MCP:

from mcp_bbs.telnet_client import TelnetClient

client = TelnetClient()

# Connect
await client.connect(
    host="bbs.example.com",
    port=23,
    cols=80,
    rows=25,
    term="ANSI",
    send_newline=True,
    reuse=False
)

# Read screen with timeout
snapshot = await client.read(timeout_ms=250, max_bytes=8192)

# Snapshot contains:
# - screen: formatted text (80x25)
# - raw: raw terminal output
# - raw_bytes_b64: base64 encoded raw bytes
# - screen_hash: SHA256 of screen text
# - cursor: {x, y} position
# - cols, rows, term

print(snapshot["screen"])
print(f"Cursor at: {snapshot['cursor']}")

# Send keys
await client.send("A\r\n")

# Wait for specific pattern
result = await client.read_until_pattern(
    pattern=r"Enter your name:",
    timeout_ms=5000,
    interval_ms=100,
    max_bytes=8192
)

if result["matched"]:
    print("Found prompt!")
    await client.send("Alice\r")

await client.disconnect()

MCP Tools Reference

The following tools are exposed when running as an MCP server:

Note: In v0.2.0, we removed duplicate *_screen variants and utility wrappers to simplify the API. Use bbs_read()["screen"] to extract screen text, and compose operations instead of using convenience wrappers like bbs_expect or bbs_play_step.

Connection Management

bbs_connect

Connect to a BBS via telnet.

{
  "host": "bbs.example.com",
  "port": 23,
  "cols": 80,
  "rows": 25,
  "term": "ANSI",
  "send_newline": true,
  "reuse": false
}

bbs_disconnect

Disconnect from the BBS. Always call before exit.

{}

bbs_status

Get connection status, session ID, last RX/TX timestamps, keepalive info.

{}

Screen Interaction

bbs_read

The primary read method. Reads from telnet stream and returns full snapshot with screen text, raw output, cursor position, and hash. Always logs raw bytes to JSONL so LLM can refer back if uncertain about screen content.

Use timeout_ms=0 to get current screen state without waiting for new data.

{
  "timeout_ms": 250,
  "max_bytes": 8192
}

Returns:

{
  "screen": "formatted 80x25 text...",
  "raw": "raw terminal output",
  "raw_bytes_b64": "base64 encoded raw bytes",
  "screen_hash": "sha256 of screen text",
  "cursor": {"x": 0, "y": 0},
  "cols": 80,
  "rows": 25,
  "term": "ANSI"
}

Important: Every bbs_read call logs the full snapshot including raw_bytes_b64 to session.jsonl (if logging enabled). If the LLM misinterprets screen content, it can consult the log file for the exact raw bytes received.

bbs_read_until_nonblank

Keep reading until screen has non-whitespace content or timeout.

{
  "timeout_ms": 5000,
  "interval_ms": 100,
  "max_bytes": 8192
}

bbs_read_until_pattern

Read until screen matches regex pattern.

{
  "pattern": "Enter your name:",
  "timeout_ms": 5000,
  "interval_ms": 100,
  "max_bytes": 8192
}

Returns: snapshot with additional "matched": true/false

bbs_send

Send keystrokes to BBS (CP437 encoded).

{
  "keys": "A\r\n"
}

Use \r for Enter, \n for Line Feed, \x1b for Escape.

bbs_wake

Try multiple keystroke sequences until screen changes (useful for idle timeouts).

{
  "timeout_ms": 5000,
  "interval_ms": 250,
  "max_bytes": 8192,
  "keys_sequence": ["\r", " ", "\r\n"]
}

Auto-Learning

bbs_auto_learn_enable

Enable/disable automatic learning of prompts and menus.

{
  "enabled": true
}

bbs_auto_learn_prompts

Configure rules to auto-detect prompts.

{
  "rules": [
    {
      "prompt_id": "username",
      "regex": "Enter your name:",
      "input_type": "text",
      "example_input": "Alice"
    }
  ]
}

bbs_auto_learn_menus

Configure rules to auto-detect menu options.

{
  "rules": [
    {
      "menu_id": "main",
      "regex": "\\[M\\] Main Menu"
    }
  ]
}

bbs_auto_learn_discover

Enable automatic discovery of [X] style menu options.

{
  "enabled": true
}

bbs_learn_menu

Manually document a menu.

{
  "menu_id": "main",
  "title": "Main Menu",
  "options": [
    {"key": "M", "label": "Read Messages"},
    {"key": "P", "label": "Post Message"},
    {"key": "Q", "label": "Quit"}
  ],
  "prompt": "Your choice:"
}

bbs_learn_prompt

Manually document a prompt.

{
  "prompt_id": "username",
  "pattern": "Enter your name:",
  "input_type": "text",
  "example_input": "Alice",
  "notes": "Username for login"
}

bbs_learn_flow

Document navigation between screens.

{
  "from_screen": "main_menu",
  "action": "M",
  "to_screen": "message_list",
  "notes": "Press M to read messages"
}

Session Management

bbs_log_start

Start JSONL session logging. Highly recommended - allows LLM to refer back to raw session data if it misreads the screen.

{
  "path": "session.jsonl"
}

bbs_log_stop

Stop session logging.

{}

bbs_log_note

Add structured note to log for debugging.

{
  "note": "Starting message read loop",
  "context": "messages"
}

bbs_set_context

Set metadata attached to all subsequent log entries.

{
  "context": {
    "menu": "main",
    "action": "reading_messages"
  }
}

Keepalive

bbs_set_keepalive

Configure automatic keepalive to prevent idle timeout.

{
  "interval_s": 30.0,
  "keys": "\r"
}

Set interval_s to 0 or null to disable.

Typical Workflow

sequenceDiagram
    participant LLM as AI Agent (LLM)
    participant MCP as mcp-bbs
    participant BBS as BBS System
    participant Log as session.jsonl
    participant KB as Knowledge Base

    LLM->>MCP: bbs_log_start("session.jsonl")
    MCP->>Log: Create log file

    LLM->>MCP: bbs_connect(host, port, ...)
    MCP->>BBS: Telnet connection
    BBS-->>MCP: Welcome screen (ANSI)
    MCP->>Log: Log connection + raw bytes

    LLM->>MCP: bbs_auto_learn_enable(true)
    LLM->>MCP: bbs_auto_learn_discover(true)

    LLM->>MCP: bbs_read_until_pattern("Main Menu")
    MCP->>BBS: Read telnet stream
    BBS-->>MCP: Raw bytes + ANSI codes
    MCP->>MCP: Parse terminal, extract text
    MCP->>Log: Log screen + raw bytes
    MCP->>KB: Discover menu options [A], [B]
    MCP-->>LLM: screen + cursor + hash

    Note over LLM: LLM analyzes screen,<br/>decides to press 'M'

    LLM->>MCP: bbs_send("M\r")
    MCP->>BBS: Send 'M' + Enter
    MCP->>Log: Log keystroke

    LLM->>MCP: bbs_read(250, 8192)
    BBS-->>MCP: Message list screen
    MCP->>Log: Log screen + raw bytes
    MCP-->>LLM: Full snapshot

    Note over LLM: If LLM is uncertain about<br/>screen content, it can<br/>refer to session.jsonl<br/>for raw bytes

    LLM->>MCP: bbs_disconnect()
    MCP->>BBS: Close connection
    MCP->>Log: Log disconnect
    LLM->>MCP: bbs_log_stop()

Key Points

  1. Always start session logging (bbs_log_start) - creates complete record with raw bytes
  2. Use bbs_read for everything - single method that always logs raw data in JSONL
  3. Enable auto-learning early - builds knowledge base for future sessions
  4. LLM can refer to logs if uncertain - every bbs_read includes raw_bytes_b64 in session log
  5. No separate "get screen" method - use bbs_read(timeout_ms=0) to get current state
  6. Knowledge base accumulates - menus, prompts, flows documented in .bbs-knowledge/

Why Single Read Method?

Previously, there were separate methods for reading new data vs. getting current screen. This was confusing and error-prone. Now:

  • Single source of truth: bbs_read always reads, always logs raw bytes
  • LLM safety: If unsure about screen content, LLM can inspect raw_bytes_b64 from session.jsonl
  • Consistent logging: Every screen observation is recorded with full context
  • Simpler API: No confusion about which method to use

Configuration

Knowledge Base

By default, learned knowledge is stored in platform-specific user data directories following the XDG Base Directory Specification:

  • Linux/BSD: ~/.local/share/mcp-bbs (or $XDG_DATA_HOME/mcp-bbs)
  • macOS: ~/Library/Application Support/mcp-bbs
  • Windows: %LOCALAPPDATA%\mcp-bbs

Override the default location with:

export BBS_KNOWLEDGE_ROOT=/path/to/knowledge

To keep knowledge bases per-project (instead of user-wide):

export BBS_KNOWLEDGE_ROOT=$(pwd)/.bbs-knowledge

Terminal Settings

Configure terminal size and keepalive:

await client.set_size(cols=80, rows=25)
await client.set_keepalive(interval_s=30.0, keys="\r")

Development

Setup

uv pip install -e ".[dev]"

Code Quality

This project uses modern Python 3.11+ features and strict quality tools:

  • Type Checking: mypy src/mcp_bbs
  • Linting: ruff check src/mcp_bbs
  • Formatting: ruff format src/mcp_bbs
  • Testing: pytest
  • Type Validation: ty src/mcp_bbs

Run All Checks

ruff check src/mcp_bbs
ruff format --check src/mcp_bbs
mypy src/mcp_bbs
pytest

Regenerate Diagrams

The architecture and workflow diagrams are generated from Mermaid files using mermaid-py:

python3 docs/generate_diagrams.py

Source files:

  • docs/diagrams/architecture.mmdarchitecture.svg
  • docs/diagrams/workflow.mmdworkflow.svg

License

MIT License - Copyright (c) 2026 Tim Perkins

See LICENSE for details.

Quick Setup
Installation guide for this server

Install Package (if required)

uvx mcp-bbs

Cursor configuration (mcp.json)

{ "mcpServers": { "livingstaccato-mcp-bbs": { "command": "uvx", "args": [ "mcp-bbs" ] } } }