MCP Servers

A collection of Model Context Protocol servers, templates, tools and more.

Model Context Protocol (MCP) server designed to generate and run mock API servers from API documentation (e.g., OpenAPI/Swagger specifications). This allows developers to quickly spin up mock backends for development, testing, and integration purposes.

Created 5/28/2025
Updated 4 days ago
Repository documentation and setup instructions

MockLoop

MockLoop MCP - AI-Native Testing Platform

PyPI version Python versions Downloads License Tests Documentation AI-Native MCP Compatible

The world's first AI-native API testing platform powered by the Model Context Protocol (MCP). MockLoop MCP revolutionizes API testing with comprehensive AI-driven scenario generation, automated test execution, and intelligent analysis capabilities.

๐Ÿš€ Revolutionary Capabilities: 5 AI Prompts โ€ข 15 Scenario Resources โ€ข 16 Testing Tools โ€ข 10 Context Tools โ€ข 4 Core Tools โ€ข Complete MCP Integration

๐Ÿ“š Documentation: https://docs.mockloop.com
๐Ÿ“ฆ PyPI Package: https://pypi.org/project/mockloop-mcp/
๐Ÿ™ GitHub Repository: https://github.com/mockloop/mockloop-mcp

๐ŸŒŸ What Makes MockLoop MCP Revolutionary?

MockLoop MCP represents a paradigm shift in API testing, introducing the world's first AI-native testing architecture that combines:

  • ๐Ÿค– AI-Driven Test Generation: 5 specialized MCP prompts for intelligent scenario creation
  • ๐Ÿ“ฆ Community Scenario Packs: 15 curated testing resources with community architecture
  • โšก Automated Test Execution: 30 comprehensive MCP tools for complete testing workflows (16 testing + 10 context + 4 core)
  • ๐Ÿ”„ Stateful Testing: Advanced context management with GlobalContext and AgentContext
  • ๐Ÿ“Š Enterprise Compliance: Complete audit logging and regulatory compliance tracking
  • ๐Ÿ—๏ธ Dual-Port Architecture: Eliminates /admin path conflicts with separate mocked API and admin ports

๐ŸŽฏ Core AI-Native Architecture

MCP Audit Logging

Enterprise-grade compliance and regulatory tracking

  • Complete request/response audit trails
  • Regulatory compliance monitoring
  • Performance metrics and analytics
  • Security event logging

MCP Prompts (5 AI-Driven Capabilities)

Intelligent scenario generation powered by AI

MCP Resources (15 Scenario Packs)

Community-driven testing scenarios with advanced architecture

  • Load Testing Scenarios: High-volume traffic simulation
  • Error Simulation Packs: Comprehensive error condition testing
  • Security Testing Suites: Vulnerability assessment scenarios
  • Performance Benchmarks: Standardized performance testing
  • Integration Test Packs: Cross-service testing scenarios
  • Community Architecture: Collaborative scenario sharing and validation

MCP Tools (16 Automated Testing Tools)

Complete automated test execution capabilities

Scenario Management (4 tools)

Test Execution (4 tools)

Analysis & Reporting (4 tools)

Workflow Management (4 tools)

MCP Context Management (10 Stateful Workflow Tools)

Advanced state management for complex testing workflows

Context Creation & Management

Data Management

Snapshot & Recovery

Global Context

๐Ÿš€ Quick Start

Get started with the world's most advanced AI-native testing platform:

# 1. Install MockLoop MCP
pip install mockloop-mcp

# 2. Verify installation
mockloop-mcp --version

# 3. Configure with your MCP client (Cline, Claude Desktop, etc.)
# See configuration examples below

๐Ÿ“‹ Prerequisites

  • Python 3.10+
  • Pip package manager
  • Docker and Docker Compose (for containerized mock servers)
  • An MCP-compatible client (Cline, Claude Desktop, etc.)

๐Ÿ”ง Installation

Option 1: Install from PyPI (Recommended)

# Install the latest stable version
pip install mockloop-mcp

# Or install with optional dependencies
pip install mockloop-mcp[dev]   # Development tools
pip install mockloop-mcp[docs]  # Documentation tools
pip install mockloop-mcp[all]   # All optional dependencies

# Verify installation
mockloop-mcp --version

Option 2: Development Installation

# Clone the repository
git clone https://github.com/mockloop/mockloop-mcp.git
cd mockloop-mcp

# Create and activate virtual environment
python3 -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate

# Install in development mode
pip install -e ".[dev]"

โš™๏ธ Configuration

MCP Client Configuration

Cline (VS Code Extension)

Add to your Cline MCP settings file:

{
  "mcpServers": {
    "MockLoopLocal": {
      "autoApprove": [],
      "disabled": false,
      "timeout": 60,
      "command": "mockloop-mcp",
      "args": [],
      "transportType": "stdio"
    }
  }
}

Claude Desktop

Add to your Claude Desktop configuration:

{
  "mcpServers": {
    "mockloop": {
      "command": "mockloop-mcp",
      "args": []
    }
  }
}

Virtual Environment Installations

For virtual environment installations, use the full Python path:

{
  "mcpServers": {
    "MockLoopLocal": {
      "command": "/path/to/your/venv/bin/python",
      "args": ["-m", "mockloop_mcp"],
      "transportType": "stdio"
    }
  }
}

๐Ÿ› ๏ธ Available MCP Tools

Core Mock Generation

generate_mock_api

Generate sophisticated FastAPI mock servers with dual-port architecture.

Parameters:

  • spec_url_or_path (string, required): API specification URL or local file path
  • output_dir_name (string, optional): Output directory name
  • auth_enabled (boolean, optional): Enable authentication middleware (default: true)
  • webhooks_enabled (boolean, optional): Enable webhook support (default: true)
  • admin_ui_enabled (boolean, optional): Enable admin UI (default: true)
  • storage_enabled (boolean, optional): Enable storage functionality (default: true)

Revolutionary Dual-Port Architecture:

  • Mocked API Port: Serves your API endpoints (default: 8000)
  • Admin UI Port: Separate admin interface (default: 8001)
  • Conflict Resolution: Eliminates /admin path conflicts in OpenAPI specs
  • Enhanced Security: Port-based access control and isolation

Advanced Analytics

query_mock_logs

Query and analyze request logs with AI-powered insights.

Parameters:

  • server_url (string, required): Mock server URL
  • limit (integer, optional): Maximum logs to return (default: 100)
  • offset (integer, optional): Pagination offset (default: 0)
  • method (string, optional): Filter by HTTP method
  • path_pattern (string, optional): Regex pattern for path filtering
  • time_from (string, optional): Start time filter (ISO format)
  • time_to (string, optional): End time filter (ISO format)
  • include_admin (boolean, optional): Include admin requests (default: false)
  • analyze (boolean, optional): Perform AI analysis (default: true)

AI-Powered Analysis:

  • Performance metrics (P95/P99 response times)
  • Error rate analysis and categorization
  • Traffic pattern detection
  • Automated debugging recommendations
  • Session correlation and tracking

discover_mock_servers

Intelligent server discovery with dual-port architecture support.

Parameters:

  • ports (array, optional): Ports to scan (default: common ports)
  • check_health (boolean, optional): Perform health checks (default: true)
  • include_generated (boolean, optional): Include generated mocks (default: true)

Advanced Discovery:

  • Automatic architecture detection (single-port vs dual-port)
  • Health status monitoring
  • Server correlation and matching
  • Port usage analysis

manage_mock_data

Dynamic response management without server restart.

Parameters:

  • server_url (string, required): Mock server URL
  • operation (string, required): Operation type ("update_response", "create_scenario", "switch_scenario", "list_scenarios")
  • endpoint_path (string, optional): API endpoint path
  • response_data (object, optional): New response data
  • scenario_name (string, optional): Scenario name
  • scenario_config (object, optional): Scenario configuration

Dynamic Capabilities:

  • Real-time response updates
  • Scenario-based testing
  • Runtime configuration management
  • Zero-downtime modifications

๐ŸŒ MCP Proxy Functionality

MockLoop MCP includes revolutionary proxy capabilities that enable seamless switching between mock and live API environments. This powerful feature transforms your testing workflow by providing:

Core Proxy Capabilities

  • ๐Ÿ”„ Seamless Mode Switching: Transition between mock, proxy, and hybrid modes without code changes
  • ๐ŸŽฏ Intelligent Routing: Smart request routing based on configurable rules and conditions
  • ๐Ÿ” Universal Authentication: Support for API Key, Bearer Token, Basic Auth, and OAuth2
  • ๐Ÿ“Š Response Comparison: Automated comparison between mock and live API responses
  • โšก Zero-Downtime Switching: Change modes dynamically without service interruption

Operational Modes

Mock Mode (MOCK)

  • All requests handled by generated mock responses
  • Predictable, consistent testing environment
  • Ideal for early development and isolated testing
  • No external dependencies or network calls

Proxy Mode (PROXY)

  • All requests forwarded to live API endpoints
  • Real-time data and authentic responses
  • Full integration testing capabilities
  • Network-dependent operation with live credentials

Hybrid Mode (HYBRID)

  • Intelligent routing between mock and proxy based on rules
  • Conditional switching based on request patterns, headers, or parameters
  • Gradual migration from mock to live environments
  • A/B testing and selective endpoint proxying

Quick Start Example

from mockloop_mcp.mcp_tools import create_mcp_plugin

# Create a proxy-enabled plugin
plugin_result = await create_mcp_plugin(
    spec_url_or_path="https://api.example.com/openapi.json",
    mode="hybrid",  # Start with hybrid mode
    plugin_name="example_api",
    target_url="https://api.example.com",
    auth_config={
        "auth_type": "bearer_token",
        "credentials": {"token": "your-token"}
    },
    routing_rules=[
        {
            "pattern": "/api/critical/*",
            "mode": "proxy",  # Critical endpoints use live API
            "priority": 10
        },
        {
            "pattern": "/api/dev/*",
            "mode": "mock",   # Development endpoints use mocks
            "priority": 5
        }
    ]
)

Advanced Features

  • ๐Ÿ” Response Validation: Compare mock vs live responses for consistency
  • ๐Ÿ“ˆ Performance Monitoring: Track response times and throughput across modes
  • ๐Ÿ›ก๏ธ Error Handling: Graceful fallback mechanisms and retry policies
  • ๐ŸŽ›๏ธ Dynamic Configuration: Runtime mode switching and rule updates
  • ๐Ÿ“‹ Audit Logging: Complete request/response tracking across all modes

Authentication Support

The proxy system supports comprehensive authentication schemes:

  • API Key: Header, query parameter, or cookie-based authentication
  • Bearer Token: OAuth2 and JWT token support
  • Basic Auth: Username/password combinations
  • OAuth2: Full OAuth2 flow with token refresh
  • Custom: Extensible authentication handlers for proprietary schemes

Use Cases

  • Development Workflow: Start with mocks, gradually introduce live APIs
  • Integration Testing: Validate against real services while maintaining test isolation
  • Performance Testing: Compare mock vs live API performance characteristics
  • Staging Validation: Ensure mock responses match production API behavior
  • Hybrid Deployments: Route critical operations to live APIs, others to mocks

๐Ÿ“š Complete Guide: For detailed configuration, examples, and best practices, see the MCP Proxy Guide.

๐Ÿค– AI Framework Integration

MockLoop MCP provides native integration with popular AI frameworks:

LangGraph Integration

from langgraph.graph import StateGraph, END
from mockloop_mcp import MockLoopClient

# Initialize MockLoop client
mockloop = MockLoopClient()

def setup_ai_testing(state):
    """AI-driven test setup"""
    # Generate mock API with AI analysis
    result = mockloop.generate_mock_api(
        spec_url_or_path="https://api.example.com/openapi.json",
        output_dir_name="ai_test_environment"
    )
    
    # Use AI prompts for scenario generation
    scenarios = mockloop.analyze_openapi_for_testing(
        api_spec=state["api_spec"],
        analysis_depth="comprehensive",
        include_security_tests=True
    )
    
    state["mock_server_url"] = "http://localhost:8000"
    state["test_scenarios"] = scenarios
    return state

def execute_ai_tests(state):
    """Execute AI-generated test scenarios"""
    # Deploy AI-generated scenarios
    for scenario in state["test_scenarios"]:
        mockloop.deploy_scenario(
            server_url=state["mock_server_url"],
            scenario_config=scenario
        )
        
        # Execute load tests with AI optimization
        results = mockloop.run_load_test(
            server_url=state["mock_server_url"],
            scenario_name=scenario["name"],
            duration=300,
            concurrent_users=100
        )
        
        # AI-powered result analysis
        analysis = mockloop.analyze_test_results(
            test_results=results,
            include_recommendations=True
        )
        
        state["test_results"].append(analysis)
    
    return state

# Build AI-native testing workflow
workflow = StateGraph(dict)
workflow.add_node("setup_ai_testing", setup_ai_testing)
workflow.add_node("execute_ai_tests", execute_ai_tests)
workflow.set_entry_point("setup_ai_testing")
workflow.add_edge("setup_ai_testing", "execute_ai_tests")
workflow.add_edge("execute_ai_tests", END)

app = workflow.compile()

CrewAI Multi-Agent Testing

from crewai import Agent, Task, Crew
from mockloop_mcp import MockLoopClient

# Initialize MockLoop client
mockloop = MockLoopClient()

# AI Testing Specialist Agent
api_testing_agent = Agent(
    role='AI API Testing Specialist',
    goal='Generate and execute comprehensive AI-driven API tests',
    backstory='Expert in AI-native testing with MockLoop MCP integration',
    tools=[
        mockloop.generate_mock_api,
        mockloop.analyze_openapi_for_testing,
        mockloop.generate_scenario_config
    ]
)

# Performance Analysis Agent
performance_agent = Agent(
    role='AI Performance Analyst',
    goal='Analyze API performance with AI-powered insights',
    backstory='Specialist in AI-driven performance analysis and optimization',
    tools=[
        mockloop.run_load_test,
        mockloop.get_performance_metrics,
        mockloop.analyze_test_results
    ]
)

# Security Testing Agent
security_agent = Agent(
    role='AI Security Testing Expert',
    goal='Conduct AI-driven security testing and vulnerability assessment',
    backstory='Expert in AI-powered security testing methodologies',
    tools=[
        mockloop.generate_security_test_scenarios,
        mockloop.run_security_test,
        mockloop.compare_test_runs
    ]
)

# Define AI-driven tasks
ai_setup_task = Task(
    description='Generate AI-native mock API with comprehensive testing scenarios',
    agent=api_testing_agent,
    expected_output='Mock server with AI-generated test scenarios deployed'
)

performance_task = Task(
    description='Execute AI-optimized performance testing and analysis',
    agent=performance_agent,
    expected_output='Comprehensive performance analysis with AI recommendations'
)

security_task = Task(
    description='Conduct AI-driven security testing and vulnerability assessment',
    agent=security_agent,
    expected_output='Security test results with AI-powered threat analysis'
)

# Create AI testing crew
ai_testing_crew = Crew(
    agents=[api_testing_agent, performance_agent, security_agent],
    tasks=[ai_setup_task, performance_task, security_task],
    verbose=True
)

# Execute AI-native testing workflow
results = ai_testing_crew.kickoff()

LangChain AI Testing Tools

from langchain.agents import Tool, AgentExecutor, create_react_agent
from langchain.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
from mockloop_mcp import MockLoopClient

# Initialize MockLoop client
mockloop = MockLoopClient()

# AI-Native Testing Tools
def ai_generate_mock_api(spec_path: str) -> str:
    """Generate AI-enhanced mock API with intelligent scenarios"""
    # Generate mock API
    result = mockloop.generate_mock_api(spec_url_or_path=spec_path)
    
    # Use AI to analyze and enhance
    analysis = mockloop.analyze_openapi_for_testing(
        api_spec=spec_path,
        analysis_depth="comprehensive",
        include_security_tests=True
    )
    
    return f"AI-enhanced mock API generated: {result}\nAI Analysis: {analysis['summary']}"

def ai_execute_testing_workflow(server_url: str) -> str:
    """Execute comprehensive AI-driven testing workflow"""
    # Create test session context
    session = mockloop.create_test_session_context(
        session_name="ai_testing_session",
        configuration={"ai_enhanced": True}
    )
    
    # Generate and deploy AI scenarios
    scenarios = mockloop.generate_scenario_config(
        api_spec=server_url,
        scenario_types=["load", "error", "security"],
        ai_optimization=True
    )
    
    results = []
    for scenario in scenarios:
        # Deploy scenario
        mockloop.deploy_scenario(
            server_url=server_url,
            scenario_config=scenario
        )
        
        # Execute tests with AI monitoring
        test_result = mockloop.execute_test_plan(
            server_url=server_url,
            test_plan=scenario["test_plan"],
            ai_monitoring=True
        )
        
        results.append(test_result)
    
    # AI-powered analysis
    analysis = mockloop.analyze_test_results(
        test_results=results,
        include_recommendations=True,
        ai_insights=True
    )
    
    return f"AI testing workflow completed: {analysis['summary']}"

# Create LangChain tools
ai_testing_tools = [
    Tool(
        name="AIGenerateMockAPI",
        func=ai_generate_mock_api,
        description="Generate AI-enhanced mock API with intelligent testing scenarios"
    ),
    Tool(
        name="AIExecuteTestingWorkflow",
        func=ai_execute_testing_workflow,
        description="Execute comprehensive AI-driven testing workflow with intelligent analysis"
    )
]

# Create AI testing agent
llm = ChatOpenAI(temperature=0)
ai_testing_prompt = PromptTemplate.from_template("""
You are an AI-native testing assistant powered by MockLoop MCP.
You have access to revolutionary AI-driven testing capabilities including:
- AI-powered scenario generation
- Intelligent test execution
- Advanced performance analysis
- Security vulnerability assessment
- Stateful workflow management

Tools available: {tools}
Tool names: {tool_names}

Question: {input}
{agent_scratchpad}
""")

agent = create_react_agent(llm, ai_testing_tools, ai_testing_prompt)
agent_executor = AgentExecutor(agent=agent, tools=ai_testing_tools, verbose=True)

# Execute AI-native testing
response = agent_executor.invoke({
    "input": "Generate a comprehensive AI-driven testing environment for a REST API and execute full testing workflow"
})

๐Ÿ—๏ธ Dual-Port Architecture

MockLoop MCP introduces a revolutionary dual-port architecture that eliminates common conflicts and enhances security:

Architecture Benefits

  • ๐Ÿ”’ Enhanced Security: Complete separation of mocked API and admin functionality
  • โšก Zero Conflicts: Eliminates /admin path conflicts in OpenAPI specifications
  • ๐Ÿ“Š Clean Analytics: Admin calls don't appear in mocked API metrics
  • ๐Ÿ”„ Independent Scaling: Scale mocked API and admin services separately
  • ๐Ÿ›ก๏ธ Port-Based Access Control: Enhanced security through network isolation

Port Configuration

# Generate mock with dual-port architecture
result = mockloop.generate_mock_api(
    spec_url_or_path="https://api.example.com/openapi.json",
    business_port=8000,  # Mocked API port
    admin_port=8001,     # Admin UI port
    admin_ui_enabled=True
)

Access Points

  • Mocked API: http://localhost:8000 - Your API endpoints
  • Admin UI: http://localhost:8001 - Management interface
  • API Documentation: http://localhost:8000/docs - Interactive Swagger UI
  • Health Check: http://localhost:8000/health - Server status

๐Ÿ“Š Enterprise Features

Compliance & Audit Logging

MockLoop MCP provides enterprise-grade compliance features:

  • Complete Audit Trails: Every request/response logged with metadata
  • Regulatory Compliance: GDPR, SOX, HIPAA compliance support
  • Performance Metrics: P95/P99 response times, error rates
  • Security Monitoring: Threat detection and analysis
  • Session Tracking: Cross-request correlation and analysis

Advanced Analytics

  • AI-Powered Insights: Intelligent analysis and recommendations
  • Traffic Pattern Detection: Automated anomaly detection
  • Performance Optimization: AI-driven performance recommendations
  • Error Analysis: Intelligent error categorization and resolution
  • Trend Analysis: Historical performance and usage trends

๐Ÿ”„ Stateful Testing Workflows

MockLoop MCP supports complex, stateful testing workflows through advanced context management:

Context Types

  • Test Session Context: Maintain state across test executions
  • Workflow Context: Complex multi-step testing orchestration
  • Agent Context: AI agent state management and coordination
  • Global Context: Cross-session data sharing and persistence

Example: Stateful E-commerce Testing

# Create test session context
session = mockloop.create_test_session_context(
    session_name="ecommerce_integration_test",
    configuration={
        "test_type": "integration",
        "environment": "staging",
        "ai_enhanced": True
    }
)

# Create workflow context for multi-step testing
workflow = mockloop.create_workflow_context(
    workflow_name="user_journey_test",
    parent_context=session["context_id"],
    steps=[
        "user_registration",
        "product_browsing",
        "cart_management",
        "checkout_process",
        "order_fulfillment"
    ]
)

# Execute stateful test workflow
for step in workflow["steps"]:
    # Update context with step data
    mockloop.update_context_data(
        context_id=workflow["context_id"],
        data={"current_step": step, "timestamp": datetime.now()}
    )
    
    # Execute step-specific tests
    test_result = mockloop.execute_test_plan(
        server_url="http://localhost:8000",
        test_plan=f"{step}_test_plan",
        context_id=workflow["context_id"]
    )
    
    # Create snapshot for rollback capability
    snapshot = mockloop.create_context_snapshot(
        context_id=workflow["context_id"],
        snapshot_name=f"{step}_completion"
    )

# Analyze complete workflow results
final_analysis = mockloop.analyze_test_results(
    test_results=workflow["results"],
    context_id=workflow["context_id"],
    include_recommendations=True
)

๐Ÿš€ Running Generated Mock Servers

Using Docker Compose (Recommended)

# Navigate to generated mock directory
cd generated_mocks/your_api_mock

# Start with dual-port architecture
docker-compose up --build

# Access points:
# Mocked API: http://localhost:8000
# Admin UI: http://localhost:8001

Using Uvicorn Directly

# Install dependencies
pip install -r requirements_mock.txt

# Start the mock server
uvicorn main:app --reload --port 8000

Enhanced Features Access

  • Admin UI: http://localhost:8001 - Enhanced management interface
  • API Documentation: http://localhost:8000/docs - Interactive Swagger UI
  • Health Check: http://localhost:8000/health - Server status and metrics
  • Log Analytics: http://localhost:8001/api/logs/search - Advanced log querying
  • Performance Metrics: http://localhost:8001/api/logs/analyze - AI-powered insights
  • Scenario Management: http://localhost:8001/api/mock-data/scenarios - Dynamic testing

๐Ÿ“ˆ Performance & Scalability

MockLoop MCP is designed for enterprise-scale performance:

Performance Metrics

  • Response Times: P50, P95, P99 percentile tracking
  • Throughput: Requests per second monitoring
  • Error Rates: Comprehensive error analysis
  • Resource Usage: Memory, CPU, and network monitoring
  • Concurrency: Multi-user load testing support

Scalability Features

  • Horizontal Scaling: Multi-instance deployment support
  • Load Balancing: Built-in load balancing capabilities
  • Caching: Intelligent response caching
  • Database Optimization: Efficient SQLite and PostgreSQL support
  • Container Orchestration: Kubernetes and Docker Swarm ready

๐Ÿ”’ Security Features

Built-in Security

  • Authentication Middleware: Configurable auth mechanisms
  • Rate Limiting: Prevent abuse and DoS attacks
  • Input Validation: Comprehensive request validation
  • Security Headers: CORS, CSP, and security headers
  • Audit Logging: Complete security event logging

Security Testing

  • Vulnerability Assessment: AI-powered security testing
  • Penetration Testing: Automated security scenario generation
  • Compliance Checking: Security standard compliance verification
  • Threat Modeling: AI-driven threat analysis
  • Security Reporting: Comprehensive security analytics

๐Ÿ›ฃ๏ธ Future Development

Upcoming Features ๐Ÿšง

Enhanced AI Capabilities

  • Advanced ML Models: Custom model training for API testing
  • Predictive Analytics: AI-powered failure prediction
  • Intelligent Test Generation: Self-improving test scenarios
  • Natural Language Testing: Plain English test descriptions

Extended Protocol Support

  • GraphQL Support: Native GraphQL API testing
  • gRPC Integration: Protocol buffer testing support
  • WebSocket Testing: Real-time communication testing
  • Event-Driven Testing: Async and event-based API testing

Enterprise Integration

  • CI/CD Integration: Native pipeline integration
  • Monitoring Platforms: Datadog, New Relic, Prometheus integration
  • Identity Providers: SSO and enterprise auth integration
  • Compliance Frameworks: Extended regulatory compliance support

๐Ÿค Contributing

We welcome contributions to MockLoop MCP! Please see our Contributing Guidelines for details.

Development Setup

# Fork and clone the repository
git clone https://github.com/your-username/mockloop-mcp.git
cd mockloop-mcp

# Create development environment
python3 -m venv .venv
source .venv/bin/activate

# Install development dependencies
pip install -e ".[dev]"

# Run tests
pytest tests/

# Run quality checks
ruff check src/
bandit -r src/

Community

๐Ÿ“„ License

MockLoop MCP is licensed under the MIT License.


๐ŸŽ‰ Get Started Today!

Ready to revolutionize your API testing with the world's first AI-native testing platform?

pip install mockloop-mcp

Join the AI-native testing revolution and experience the future of API testing with MockLoop MCP!

๐Ÿš€ Get Started Now โ†’

Quick Setup
Installation guide for this server

Installation Command (package not published)

git clone https://github.com/MockLoop/mockloop-mcp
Manual Installation: Please check the README for detailed setup instructions and any additional dependencies required.

Cursor configuration (mcp.json)

{ "mcpServers": { "mockloop-mockloop-mcp": { "command": "git", "args": [ "clone", "https://github.com/MockLoop/mockloop-mcp" ] } } }