MCP Servers

A collection of Model Context Protocol servers, templates, tools and more.

M
MCP Ai Research Assistant

Offline AI Research Assistant built using Model Context Protocol (MCP)

Created 2/12/2026
Updated about 21 hours ago
Repository documentation and setup instructions

MCP AI Research Assistant (Offline)

📌 Overview

An offline AI Research Assistant built using the Model Context Protocol (MCP). The system uses a FastMCP server exposing structured tools and a custom client orchestrator communicating via stdio transport.

This project demonstrates end-to-end MCP integration without external APIs.

🚀 Features:

Summarize research text Extract key points Save research notes locally Retrieve saved notes Fully offline stdio-based MCP transport Structured tool invocation

🏗 Architecture

  User CLI

      ↓

  MCP Client

      ↓ (stdio transport)

  FastMCP Server

      ↓

  Tool Execution Layer

      ↓

  notes.json

🛠 Tech Stack:

Python 3.13

Model Context Protocol (MCP) v1.26.0

FastMCP

AsyncIO

▶️ How To Run:

  1. Clone repository: git clone https://github.com/paneri11/mcp-ai-research-assistant.git

    cd mcp-ai-research-assistant

  2. Create virtual environment: python -m venv venv

    venv\Scripts\activate # Windows

  3. Install dependencies: pip install -r requirements.txt

  4. Run: python client/client.py

Quick Setup
Installation guide for this server

Install Package (if required)

uvx mcp-ai-research-assistant

Cursor configuration (mcp.json)

{ "mcpServers": { "paneri11-mcp-ai-research-assistant": { "command": "uvx", "args": [ "mcp-ai-research-assistant" ] } } }