A Model Context Protocol (MCP) server that provides semantic search over AWS Cloudscape Design System documentation.
Cloudscape Docs MCP Server
A Model Context Protocol (MCP) server that provides semantic search over AWS Cloudscape Design System documentation. Built for AI agents and coding assistants to efficiently query component documentation.
Features
- Semantic Search - Find relevant documentation using natural language queries powered by Alibaba GTE Multilingual Base model
- Token Efficient - Returns concise file lists first, full content on demand
- Hardware Optimized - Automatic detection of Apple Silicon (MPS), CUDA, or CPU
- Local Vector Store - Uses LanceDB for fast, file-based vector search
Transport
This server uses the MCP stdio transport protocol.
Streamable HTTP transport coming soon.
Tools
| Tool | Description |
|------|-------------|
| cloudscape_search_docs | Search the documentation index. Returns top 5 relevant files with titles and paths. |
| cloudscape_read_doc | Read the full content of a specific documentation file. |

Requirements
- Python 3.13+
- ~3GB disk space for the embedding model
- 8GB+ RAM recommended
Installation
# Clone the repository
git clone https://github.com/praveenc/cloudscape-docs-mcp.git
cd cloudscape-docs-mcp
# Create virtual environment and install dependencies
uv sync
# Or with pip
pip install -e .
Setup
1. Add Documentation
Place your Cloudscape documentation files in the docs/ directory. Supported formats:
.md(Markdown).txt(Plain text).tsx/.ts(TypeScript/React)
2. Build the Index
Run the ingestion script to create the vector database:
uv run ingest.py
This will:
- Scan all files in
docs/ - Chunk content into ~2000 character segments
- Generate embeddings using Alibaba GTE Multilingual Base embedding model
- Store vectors in
data/lancedb/
Note: Running
uv run ingest.pymultiple times is safe but performs a full re-index each time. The script usesmode="overwrite"which drops and recreates the database table. There is no incremental update or change detection—all documents are re-scanned and re-embedded on every run. This is idempotent (same docs produce the same result) but computationally expensive for large documentation sets.
3. Run the Server
uv run server.py
MCP Client Configuration
Claude Desktop
Add to your mcp.json:
{
"mcpServers": {
"cloudscape-docs": {
"command": "uv",
"args": ["run", "--directory", "/path/to/cloudscape-docs-mcp", "python", "server.py"]
}
}
}
Cursor / VS Code / Windsurf / Kiro
Add to your MCP settings:
{
"cloudscape-docs": {
"command": "uv",
"args": ["run", "--directory", "/path/to/cloudscape-docs-mcp", "python", "server.py"]
}
}
Zed
Add to your Zed settings (settings.json):
{
"context_servers": {
"cloudscape-docs": {
"command": {
"path": "uv",
"args": ["run", "--directory", "/path/to/cloudscape-docs-mcp", "python", "server.py"]
}
}
}
}
Usage Example
Once connected, an AI assistant can:
-
Search for components:
User: "How do I use the Table component with sorting?" Agent: [calls cloudscape_search_docs("table sorting")] -
Read specific documentation:
Agent: [calls cloudscape_read_doc("docs/components/table/sorting.md")]
Project Structure
cloudscape-docs-mcp/
├── server.py # MCP server with search/read tools
├── ingest.py # Documentation indexing script
├── pyproject.toml # Project dependencies
├── docs/ # Documentation files (partially curated)
│ ├── components/ # Component documentation
│ ├── foundations/ # Design foundations
│ └── genai_patterns/# GenAI UI patterns
└── data/ # Generated vector database (gitignored)
└── lancedb/
Configuration
Key settings in server.py and ingest.py:
| Variable | Default | Description |
|----------|---------|-------------|
| MODEL_NAME | Alibaba-NLP/gte-multilingual-base | Embedding model |
| VECTOR_DIM | 768 | Vector dimensions |
| MAX_UNIQUE_RESULTS | 5 | Max search results returned |
| DOCS_DIR | ./docs | Documentation source directory |
| DB_URI | ./data/lancedb | Vector database location |
Development
# Install dev dependencies
uv sync --group dev
# Run with MCP inspector
npx @modelcontextprotocol/inspector uv --directory /path/to/cloudscape_docs run server.py
# Alternatively, use mcp cli to launch the server
mcp dev server.py
License
MIT License - See LICENSE for details.