Give your personal ๐ค agent ๐ง about your project: a local MCP server that exposes project files, structure, search, and summaries so agents in any IDE can ๐ and utilize it in current ๐.
MCP Project Context Server
An MCP (Model Context Protocol) server that enables AI agents in any IDE to analyze and gain context about any project on your system.
Features
The server provides the following tools for AI agents:
| Tool | Description |
| ----------------------- | ------------------------------------------------------ |
| set_project_path | Set the path to the project you want to analyze |
| get_project_structure | Get the directory tree structure of the project |
| list_files | List all files in the project |
| read_file | Read the content of a specific file |
| read_multiple_files | Read multiple files at once |
| search_in_files | Search for text/regex patterns across project files |
| get_file_info | Get file metadata (size, modification date) |
| get_project_summary | Get project summary (file types, technology detection) |
Installation
npm install
npm run build
Usage
1. Running the Server
npm start
Or with a project path set via environment variable:
# Windows PowerShell
$env:PROJECT_PATH="C:\path\to\your\project"; npm start
# Windows CMD
set PROJECT_PATH=C:\path\to\your\project && npm start
# Linux/Mac
PROJECT_PATH=/path/to/your/project npm start
2. IDE Configuration
Configure the MCP server in your IDE that supports the Model Context Protocol.
VS Code (with Copilot or other MCP-compatible extension)
Add to your VS Code settings or MCP configuration file:
{
"mcpServers": {
"project-context": {
"command": "node",
"args": ["/path/to/mcp-project-context/dist/mcp-server.js"],
"env": {
"PROJECT_PATH": "/path/to/project/you/want/to/analyze"
}
}
}
}
JetBrains IDEs with GitHub Copilot (Android Studio, IntelliJ IDEA, WebStorm, PyCharm, etc.)
Open or create the mcp.json file in your JetBrains IDE (Settings โ Tools โ GitHub Copilot โ MCP Servers, or find it in your IDE config directory) and add:
{
"servers": {
"project-context": {
"type": "stdio",
"command": "node",
"args": ["C:\\path\\to\\mcp-project-context\\dist\\mcp-server.js"],
"env": {
"PROJECT_PATH": "C:\\path\\to\\project\\you\\want\\to\\analyze"
}
}
}
}
Note: On Windows use double backslashes
\\or forward slashes/in paths.
Cursor, Windsurf, or other MCP-compatible editors
Check your editor's documentation for MCP server configuration. The configuration format is typically similar:
{
"project-context": {
"command": "node",
"args": ["/path/to/mcp-project-context/dist/mcp-server.js"]
}
}
Global MCP Configuration
You can also create a global configuration file:
- Linux/Mac:
~/.config/mcp/servers.json - Windows:
%APPDATA%\mcp\servers.json
{
"project-context": {
"command": "node",
"args": ["/path/to/mcp-project-context/dist/mcp-server.js"]
}
}
3. Using with AI Agent
Once connected, the AI agent can use these tools:
-
First, set the project path:
set_project_path({ projectPath: "/home/user/projects/my-app" }) -
Get a project overview:
get_project_summary() -
Explore the structure:
get_project_structure({ maxDepth: 3 }) -
Read specific files:
read_file({ relativePath: "src/main.ts" }) -
Search in code:
search_in_files({ query: "function handleClick", filePattern: ".ts" })
Security
- The server automatically ignores binary files and common directories like
node_modules,.git,build - Access is restricted to files within the configured project directory
- Cannot read files outside the project directory (path traversal protection)
Ignored Directories
- node_modules
- .git
- .idea
- .gradle
- build
- .next
- dist
- out
- pycache
- .venv, venv
Ignored File Types
- Images: .jpg, .jpeg, .png, .gif, .ico, .svg
- Archives: .zip, .tar, .gz
- Binaries: .exe, .dll, .so, .class, .jar, .apk, .aab
- Logs: .lock, .log
License
MIT