L
Log MCP Agentic Analysis
by @shahraj91
MCP server by shahraj91
Created 2/21/2026
Updated about 21 hours ago
README
Repository documentation and setup instructions
Log MCP -- Agentic Log Analysis System
A local Model Context Protocol (MCP) server + client system for analyzing large log files using a hybrid architecture:
- Deterministic signal extraction (parsing, aggregation, clustering)
- Tool abstraction via MCP
- Optional agentic reasoning via OpenAI Agents SDK
- Structured output + visual graph generation
This project simulates how modern production log triage systems are built.
Why This Project Exists
Most AI demos throw raw logs into an LLM.
This system does the opposite:
- Extract structured signals deterministically\
- Expose capabilities as MCP tools\
- Allow optional agentic reasoning on top
This separation mirrors production-grade observability and AI-assisted triage systems.
Features
- Log level aggregation (INFO / WARN / ERROR / FATAL)
- Time-bucketed event histogram
- Error clustering via normalized string similarity
- Graph generation (PNG)
- Local-only mode (no API required)
- Optional agentic integration (LLM-powered triage summaries)
Architecture
local_triage.py (client)
↓
MCP HTTP transport
↓
server.py (tool layer)
↓
Log analysis + graph generation
MCP Tools Exposed
analyze_levelscluster_errorsmake_graph
The client calls these tools and formats the output.
Example Output (15k+ Line Log)
Terminal Analysis Output

Log Level Distribution Graph

Setup
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
Generate Large Synthetic Log
python3 generate_large_log.py
This produces a 15,000+ line realistic production-style log.
Run MCP Server
python3 server.py
Run Local Triage (No OpenAI Required)
In a separate terminal:
python3 local_triage.py --log large_sample.log
Outputs:
- Log level table (counts + %)
- Top error clusters
- Time-bucket summary
- Graph saved as
log_levels.png
Optional: Agentic Mode (Requires OpenAI API Key)
export OPENAI_API_KEY="sk-..."
python3 agent_client.py
This allows the agent to: - Call MCP tools - Summarize root causes - Suggest debugging steps - Classify severity
Tech Stack
- Python 3.12
- MCP (Model Context Protocol)
- Pandas
- Matplotlib
- OpenAI Agents SDK (optional)
Project Structure
log-mcp/
│
├── server.py
├── local_triage.py
├── agent_client.py
├── generate_large_log.py
├── sample.log
├── requirements.txt
├── docs/
│ ├── terminal_output.png
│ └── log_levels.png
└── README.md
Design Philosophy
- Deterministic first
- LLM second
- Clear separation of capabilities and reasoning
- Production-inspired architecture
- Reproducible and inspectable outputs
Future Improvements
- Streamlit dashboard UI
- Docker containerization
- GitHub Actions CI
- Structured test coverage
- Semantic clustering via embeddings
- Real-time streaming log ingestion
License
MIT
Quick Setup
Installation guide for this server
Install Package (if required)
uvx log-mcp-agentic-analysis
Cursor configuration (mcp.json)
{
"mcpServers": {
"shahraj91-log-mcp-agentic-analysis": {
"command": "uvx",
"args": [
"log-mcp-agentic-analysis"
]
}
}
}